16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

~ COMPARING TWO SAMPLES

by Dr Juan H Klopper

e Research Fellow
e School for Data Science and Computational Thinking
e Stellenbosch University

SCHOOL FOR
DATA SCIENCE &

COMPUTATIONAL
THINKING

v INTRODUCTION

In this notebook we build on our understanding of sampling distributions by investigating a few
examples. Here, we only have the data from one study and, as is most often the case, we do not
have access to the whole population.

We will still build sampling distributions of test statistics under a null hypothesis to put the test
statitic of our data in perspective.

v PACKAGES USED IN THIS NOTEBOOK

1 # Data table configuration for Colab
2 3load _ext google.colab.data table

1 %config InlineBackend.figure format = "retina" # For Retina type displays
1 from google.colab import drive # For connecting to our Google Drive

1 import pandas as pd # Data import and manipulation
2 import numpy as np # Numerical computing
3 from scipy import stats # Statistics module

1 # Data visualisation
https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 1/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

2 import plotly.graph objects as go

3 import plotly.express as px

4 import plotly.io as pio

5 pio.templates.default = 'plotly white'

v DATA IMPORT

We follow the now familiar process of importing data from our Google Drive, stored in a sub
directory to the one in which this notebook resides.

1 # Log on and list files in the DATA directory of your Google Drive
2 drive.mount('/gdrive')
3 %cd '/gdrive/My Drive/Stellenbosch University/School for Data Science and Compui

Mounted at /gdrive
/gdrive/My Drive/Stellenbosch University/School for Data Science and Computat

1 df = pd.read csv('data.csv') # Importing the CSV files

1 df # Printing the DataFrame to the screen

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 2/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

1 to 25 of 200 entries 0

index Name DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey

T e 0 PPN
1 ﬁi”w‘lr; 8??237' 53 Tax adviser 0 51 115 12 06 3
2 s\ﬁﬂ?:r:tsha]27231 33 IT consultant 0 54 120 20 1.3 3
(L e SIRDE
4 Wisn 0623 %6 ambnoogst © ©1 138 28 21 5
5 Leslie Diaz 82?2‘2 48 Zg;'lts"t:;rt‘s 0 59 122 28 14 4
6 ;m’q‘erman 82?01‘; 54 Police officer 0 60 129 29 24 1
A A T S I 5122
8 \évr:'iit?]m 1??2% 44 Eﬁgrnatltgfy 0 58 111 31 24 1
technician
g Andrea - 10%% 31 Lexicographer 0 59 122 32 17 5
10 \J,\j‘ggs (1)2?(% 45 gﬂ?ﬂ?gser 0 62 121 32 17 4
Chief

1 df .shape # Number of patients and variables

(200, 13)

There are 200 observations and 13 variables.

Chuvnn 1021

COMPARING THE DISTRIBUTION OF A NUMERICAL VARIABLE
BETWEEN TWO INDEPENDENT GROUPS

Nnnic 1048 hartarad
Comparing the distribution of data values for a continuous numerical variable between two
groups, requires splitting the data along the sample space of one of the categorical variables (or
then a numerical variable from which bins have been created). We consider an appropriate
research question to investigate the comparison of two distributions.

__ Mr. Bradlev 1990- __ Conservation I R B o _
RESEARCH QUESTION: Is there a difference in heart rate values (the HrR variable) between the
Active group and the Control group (the Group variable)?

nn James PAVIVIV

B1 Immiinnlnnict n RA 124 Q7 2N 1
Note how the groups are formed by the sample space elements of a nominal categorical
variable. The two sample space elements, active and control are also independent of each

other.

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 3/16

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

In this example we are going to make use of numpy arrays to hold the heart rate values for each

group.

1 # Array for heart rates of control participants

2 hr control = df[df.Group == 'Control']['HR'].to numpy()
3

4 # Array for heart rate of active participants

5 hr active = df[df.Group == 'Active']['HR'].to numpy()

Our analysis is, as always, preceded by the use of descriptive statistics and visualisation.

v DESCRIPTIVE STATISTICS

We can group by the Group variable and then use the describe method to return summary
statistics of the HR variable. Remember that the groupby function is used to generate groups
according to the sample space elements of a variable.

1 df.groupby('Group')['HR'].describe()
1 to 2 of 2 entries 0
Group count mean std min 25% 50% 75% max
Active 100.0 76.88 11.767340524957323 47.0 67.0 80.5 87.0 104.0
Control 100.0 72.43 12.21710590801589 24.0 65.0 69.0 80.25 99.0

Show per page

v VISUALIZATION

Since we have a continuous numerical variable, a box plot will provide a good visual summary of

the data.

1 px.box(df,

2 y = 'HR',
3 color = 'Group',
4 title='Heart rate distribution among treatment groups')

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 4/16

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

Heart rate distribution among treatment groups

100 —_—

90

80

70

HR

60

50

40

v COMPARING THE TWO SAMPLES

Our null hypothesis states that there is no diference in the distribution of heart rate between the
two groups (or that it is higher in the control group). It can be denoted by
Hy : HR Active = HRcontrol -

Our alternatine hypothesis states that the heart rate in the active group is different from the
heart rate in the control group. It can be denoted by H, = HR active 7 HRcontrol -

A good test statistic to compare the difference in this continuous numerical variable is the
mean, or then the difference in means.

1 # Our test statistic
2 np.mean(hr active - hr control)

4.45

Remeber that this could also be —4.45.

In the previous notebook, we used formal statistical tests to compare these means. Here, we
expand our understanding of hypotheses testing using a more intuitive approach than statistical
tests. We will use a statistical test at the end to verify our results.

In our next step, we have to calculate the distribution of our test statistic under the null
hypothesis. In practical terms, this states a random reallocation of group status. There are 200

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 5/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory
samples in the dataset, with 100 cases in each group. We randomly reassign a group to each
heart rate. Doing this repeatedly and collecting all the means (and then differences in means)
will yield a distribution of sampling mean differencess (our test statistic). This is done 10000
below, populating a list object, mean_stat with 10000 mean differences.

We can do this because our assumption on which we build is that the values are equal in both
groups.

1 mean stat = []

2

3 for i in range(10000):

4 grouping = np.random.choice(df.HR, size=(100, 2), replace=False)
5 groupIl = np.mean(grouping[0:100, 0])

6 groupII = np.mean(grouping[0:100, 11])

7 mean stat.append(groupl - groupII)

We look at a histogram of the sampling distribution of means (difference in means) and our
original difference.

1 go.Figure(

2 data=go.Histogram(

3 x=mean_stat,

4 name='Mean differences'

5)

6).add trace(go.Scatter(

7 x=[4.45, 4.45],

8 y=[0, 1401,

9 mode='lines',

10 name='0Original difference'

11)).update layout(

12 title='Distribution of difference in means',
13 xaxis={'title':'Difference'},
14 yaxis={'title': 'Frequency'}
15)

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 6/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

Distribution of difference in means

L

We note that the difference in means of our study in relation to the distribution of differences in
means under the null hypothesis was a rare finding indeed. Since Python stores a False value
as 0 and a True value as 1, we can sum over the True and False values, expressing the
number of cases in the mean_stat list above, i.e. that were larger than our data's value of 4.45.

- -y
1 np.sum(np.array(mean_stat) > 4.45) / 10000

0.0052
-6 -4 -2 0 2
Since we could also have subtracted in a different order, we also need to consider all the fraction
of sampling distribution values less than —4.45, as we can see from the histogram below.

1 go.Figure(

2 data=go.Histogram(
3 X=mean_stat,
4 name='Mean differences'
5)
6).add trace(go.Scatter(
7 x=[4.45, 4.45],
8 y=[0, 1407,
9 mode='lines',
10 name='0Original difference'
11)).add trace(go.Scatter(
12 x=[-4.45, -4.45],
13 y=[0, 1407,
14 mode="'lines',
15 name='Reverse order subtraction'
16)).update layout(
17 title='Distribution of difference in means',
18 xaxis={'title':'Difference'},
19 yaxis={'title': 'Frequency'}
20)

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 7/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

Distribution of difference in means

200
150
>
O
C
(0]
>
O
@ 100
L
50
0_ - - -

We use the same method to calculate the fraction below as we did with the above calculation.

1 np.sum(np.array(mean_stat) < -4.45) / 10000

0.0034

We add these values to get 0.0044 + 0.0041 = 0.0085 ~ 0.009.

This is a simulated p value for our study. It is much smaller than a chosen « value of 0.05 and
we can reject the null hypothesis.

Let's recap. Since we don't have access to the complete population we used a technique of
reassignment to our known data under the null hypothesis that there is no difference between
the groups. From this we built a sampling distribution. We looked at how many times the
sampling distribution values was more and less than our finding (with subtraction in either

order).

Just to confirm, we also use Student's t to calculate a p value.

v COMPARING MEANS WITH STUDENT'S t TEST

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 8/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory
The t test for independent groups compares the mean values of the variable in each group. The t
distribution uses the degrees of freedom parameter (as we saw in the previous notebook).

The ttest_ind function from the stats module in the scipy package can perform this test. It
returns the t statistic and a (two-tailed) p value. We have to divide this p value by 2 to get the
one-tailed p values.

1t stat, p val = stats.ttest _ind(hr_active,
2 hr control)
3 p val

0.009382957236919214

This is very close to the p value that we calculated above.

We see a t statistic and a p value for this t statistic. A visual representation is given below, where
the critical t statistic (representing 2.5% (below) and 2.5% (above) of the total area under the
curve) is in orange and the t statistic for our data is in blue.

1 t stat

2.623426872064485

1t vals = np.linspace(-3, 3, 200) # Generating some values for the x-axis
2 t pdf vals = stats.t.pdf(t_vals, 198) # Calculating the PDF value for each of i
3

4 t dist fig = go.Figure()

5

6 t dist fig.add trace(go.Scatter(x=t vals,

7 y=t pdf vals,

8 mode="'lines',

9 name='t distribution'))

10

11 t dist fig.update layout(title="Student's t test"”,

12 xaxis=dict(title='t values'),

13 yaxis=dict(title='Distribution'))
14

15 t dist fig.add trace(go.Scatter(

16 x=[t_stat, t_stat],

17 y=[0,0.41,

18 name='t statistic',

19 mode="'lines',
20 marker=dict({'color': 'deepskyblue'})
21))
22
23 t dist fig.add trace(go.Scatter(
24 x=[-t_stat, -t _stat],
25 y=[0,0.41,

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 9/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

26 name='t statistic',

27 mode="'lines',

28 marker=dict({'color': 'deepskyblue'})
29))

30

31 t crit = stats.t.ppf(0.975, 198)

32

33 t dist fig.add trace(go.Scatter(

34 x=[t_crit, t crit],

35 y=[0,0.47,

36 name='critical t statistic',

37 mode="'lines',

38 marker=dict({'color':'orange'})
39))

40

41 t dist fig.add trace(go.Scatter(

42 x=[-t_crit, -t crit],

43 y=[0,0.47,

44 name='critical t statistic',

45 mode='lines',

46 marker=dict({'color':'orange'})
47))

48

49 t dist fig.show()

Student's t test

0.4
0.35
0.3
0.25

0.2

Distribution

0.15

0.1

0.05 /

-3 -2 -1 0 1

t values

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 10/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory
For a chosen «a value of 0.05 (which is above and below the orange lines), we reject the null
hypothesis and accept the alternative hypothesis and state that the heart rate in the active group
is significantly different from the heart rate in the control group.

COMPARING THE MEANS OF SYSTOLIC BLOOD PRESSURE
BETWEEN AGE GROUPS

Here we consider the difference in systolic blood pressure (sBp variable) between younger and
older patients. Our null hypothesis is that there is no difference in the systolic blood pressdure
between the groups. Our alternative hypothesis is that there is a difference. Hypothesis testing
is therefor two-sided.

In this example, we review how to work with data and create two groups of age by binning the
data using a conditional. We will let every participant younger than 65 be in age group | and
every participants 65 and older be in age group II.

1 # Creating a new variable using the where function
2 df['AgeGroup'] = np.where(df.Age < 65, 'I', 'II')

v DESCRIPTIVE STATISTICS

The result is an unbalanced variable, where we have an over-representation of the younger
participants.

1 df .AgeGroup.value counts()

I 152
IT 48
Name: AgeGroup, dtype: inté64

The groupby method is used to describe the systolic blood pressure in both groups.

1 df .groupby('AgeGroup') .sBP.describe ()

1 to 2 of 2 entries 0

AgeGroup count mean std min 25% 50% 75% max
| 152.0 153.66447368421052 25.351553129517992 52.0 135.0 1525 173.0 212.0
Il 48.0 168.47916666666666 23.68587835258244 128.0 146.75 174.5 187.0 208.0

Show per page

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 11/16

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

Younger participants have a lower mean blood pressure. Below, we visualise this difference.

v VISUALISATION

1 px.box(df,

2 y = 'sBP',

3 color = 'AgeGroup',

4 title='Systolic blood pressure distribution among treatment groups',
5 labels={'sBP':'Systolic BP'})

Systolic blood pressure distribution among treatment groups

220

200

180

160

140

Systolic BP

120

100
80

60

We need to know how different the means are.

v COMPARING THE VARIABLE BETWEEN THE TWO GROUPS

As with our previous use of the null hypothesis, we assume that the systolic blood pressure (the
sBP variable) is independent of the age group.

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 12/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory
We can reassign the systolic blood pressure. Here, we accomplish the task by repeatedly
shuffling the values in the sBP numpy array, using the random.shuffle nump function. We
have to be careful with pandas here. When we do the shiffle, we actually change the original
dataframe, even though we extracted the column and saved it as a separate numpy array. We

tharfAara rraata an indanandant ~ranv Af tha Aataframa tn wnrl wiith

1 # Make an independent copy of the dataframe
2 df copy = df.copy(deep=True)

1 mean stat = []

2

3 for i in range(10000):

4 sBP = df copy.sBP.to numpy() # Reset the original array

5 np.random.shuffle(sBP) # Reshuffle the array randomly

6 groupIl = np.mean(sBP[0:152]) # Select the first 152 obeservations

7 groupII = np.mean(sBP[152:201]) # Select the last 48 observations

8 mean_ stat.append(groupIl - groupII) # Claculate and store the difference in me:

Once again we view the sampling distribution of the mean difference test statistic. First, though,
we store the difference in means for the sample data.

Creating separate numpy arrays
younger sBP = df.loc[df.AgeGroup == 'I'].sBP.to numpy()
older sBP = df.loc[df.AgeGroup == 'II'].sBP.to numpy()

Difference in means
mean_diff = np.mean(younger sBP) - np.mean(older sBP)
mean diff

N o O W N

-14.814692982456137

Since this is a two-tailed hypothesis, we need to reflect this differnce. Below, we create a
histogram of the mean difference sample distribution and the two mean differences from the
data.

1 go.Figure(

2 data=go.Histogram(

3 X=mean_stat,

4 name='Mean differences'
5)

6).add trace(go.Scatter(

7 x=[mean diff, mean diff],

8 y=[0, 200],

9 mode="'lines',

10 name='0Original difference’
11)).add _trace(go.Scatter(

12 x=[-mean_diff, -mean diff],
13 y=[0, 200],

14 mode='lines',

15 name='Reflected original difference'

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 13/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

16)).update_ layout(

17 title='Distribution of difference in means',
18 xaxis={'title':'Difference'},

19 yaxis={'title': 'Frequency'}

20)

Distribution of difference in means

400
300
>
O
C
(0]
>
O
L 200
L
100
O_
-15 -10 -5 0 5

Difference

Below, we view both the fractions below and above our mean difference.

1 np.sum(np.array(mean_stat) < mean diff) / 10000

0.0

1 np.sum(np.array(mean_stat) > -mean diff) / 10000

0.0

Combined, we have a very small fraction of values more extreme than our original difference. We

can verify this again with a t test.

v STUDENT'S t TEST

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 14/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory
1 stats.ttest ind(

2 younger_ sBP,
3 older_ sBP
4)

Ttest indResult(statistic=-3.5839931075832485, pvalue=0.00042605478175169987)

We are usually only interested in two decimal places, so in both cases we would have p < 0.01.

For the sake of interest we look at one more t test that we use when the variances in our
continuous numerical variable is different between two groups.

v COMPARING MEANS WITH UNEQUAL VARIANCES

Student's t test assumes that the data are from populations in which the variances of the
variable are equal. This can be verified using Levene's test. The Levene test null hypothesis
states that the variances are indeed equal and the alternative hypothesis is that they are not.

We will consider if there is a difference in age between two randomly created groups.

1 # Creating two numpy arrays to hold the age values with different variances
2 np.random.seed(12)

3 age I = np.random.normal(loc=100, scale=10, size=100)

4 age II = np.random.normal(loc=100, scale=12.1, size=100)

We generate two arrays with the same mean and size. One is taken from a normal distribution
with a stabdard deviation of 10 and the other being 12.1. Is this a significant difference.

Below we use the levene function from the stats module of the scipy library. The two arrays are
used as arguments.

1 stats.levene(age I, age ITI)

LeveneResult(statistic=4.200486278483402, pvalue=0.04173087591445651)

We note that we reject the null hypothesis. We now use the t test for unequal variances, termed
the Welch test.

v t TEST FOR UNEQUAL VARIANCES

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 15/16

16/07/2021 09ComparingTwoGroups.ipynb - Colaboratory

This test is simple to perform and requires the addition of the equal var argument to the

-~

1 stats.ttest ind(

2 age_TI,

3 age IT,

4 equal var=False
5)

Ttest indResult(statistic=0.7190917638181298, pvalue=0.4729566937881784)

Here, we fasil to reject the null hypothesis.

v CONCLUSION

The t tests are commonly used in data science. They are termed parametric tests for the
comparison of two means as they are calculated from theoretical distributions based on
parameters, i.e. the t distribution is based on the parameter of degrees of freedom.

We have seen though that we can build sampling distributions from our original data under the
null hypothesis that there is no difference and from this we can estimate the disfference

between groups.

v 0s completed at 14:02 ® X

https://colab.research.google.com/drive/lmH6r0qfuW-k-4JGKsK2zB3yhyhddDxAi#scrollTo=gjyO7d8igin6&printMode=true 16/16

