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RANDOMNESS AND SAMPLING

by Dr Juan H Klopper

Research Fellow
School for Data Science and Computational Thinking
Stellenbosch University

INTRODUCTION

This notebook is a high-level look at the basics of randomess and patterns in data. Note that
(almost) none of the code that we see here, will be used for actual calculations in later
notebooks. It is nonetheless a very imprtant notebook as the code is here to illustrate the
meaning behind key ideas in Data Science.

PACKAGES USED IN THIS NOTEBOOK

1 %config InlineBackend.figure_format = "retina" # For high-DPI displays

1 %load_ext google.colab.data_table

1
2
3

import numpy as np # Numerical calculations and random values
from scipy import stats # Statisstical functions and statistical distributions
import pandas as pd # Data import and manipulation

1
2
3
4
5

# Plotting
import plotly.graph_objects as go
import plotly.io as pio
import plotly.express as px
import plotly.figure_factory as ff # Another plotly module

1 pio.templates.default = 'plotly white'
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1 pio.templates.default    plotly_white

RANDOMNESS

Randomness can be a di�cult concept to understand or to simulate. When asked to come up
with  random numbers from  to , very few us will generate a truely random set of values.
Even if tasked with writing down the outcomes of  coin �ips, we inevitably fail.

100 0 9

100

Fortunately, computers can use various algorithms to produce pseudo-random values. By many
measures they are random, yet they are produced by an algorithm with inputs and are not truly
random as for example the decay of radioactive nuclei.

The numpy package contains a random  module that can generate pseudo-random values. The
seed  function seeds the numpy random number generator (algorithm) with an integer value.
When used, the same random values will always be produced. This is used in order to make
code reproducible, i.e. we all get the same set of random values.

Below, we use the choice  function to select a random item from a list. The list is passed as an
argument to the choice  function. The list contains two string elements, Heads  and Tails .
The choice  function will choose one of the elements from the list. Each element has an equal
likelihood of being selected at random.

Heads' '

1
2
np.random.seed(42) # Seed the pseudo-random number generator
np.random.choice(['Heads', 'Tails']) # Choose one of the two list items

Heads  is selected at random.

Below, we add an integer value as argument to the choice  function in order to return the
speci�ed number of random values.

1
2
np.random.seed(42) # Seed the pseudo-random number generator
np.random.choice(['Heads', 'Tails'], 10) # Ten random coin flips

array(['Heads', 'Tails', 'Heads', 'Heads', 'Heads', 'Tails', 'Heads', 
       'Heads', 'Heads', 'Tails'], dtype='<U5')

The code iterates through the choice  times. After every random choice the selected item is
returned to the list to be available to be selected again. This is termed random selection with
replacement.

10
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We can simulate a coin �ip too. Below, we �ip a coin  times, assigning the result to a
dataframe object.

10000

1 to 5 of 5 entries Filter

Show 25  per page

0 Heads
1 Heads
2 Heads
3 Heads
4 Heads

index Flip

1
2
3

np.random.seed(None)
flips = pd.DataFrame({'Flip':np.random.choice(['Heads', 'Tails'], 10000)}) # Ten
flips.head()

The value_counts  method of the dataframe object, flips , shows a nearly equal frequency.

1 flips.Flip.value_counts()

Heads    5073 
Tails    4927 
Name: Flip, dtype: int64

We can do the same for a fair, six-sided die, plotting the results as a bar plot. Below, we roll the
die  times and asign the resultant numpy array to a column in a dataframe object.
Remember that with a single column, its is actually a series object.

10000

1
2
3

np.random.seed()
sides = [1, 2, 3, 4, 5 ,6]
die = pd.DataFrame({'Die':np.random.choice(sides, 10000)})

1
2
3
4
5
6

px.bar(
    x=sides,
    y=die.Die.value_counts().sort_index().values.tolist(),
    title='Frequency of die faces following 10000 rolls',
    labels={'x':'Face value', 'y':'Frequency'}
)

https://colab.research.google.com/notebooks/data_table.ipynb
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Since each value has an equal likelihood of landing face up, we see a near equal frequency for
each value.

There are many other random functions in numpy except for choice . We will learn about some
of them later in this notebook.

INTRODUCING PROBABILITIES

We recognized the fact that each element in the list objects that we created above to simulate a
coin and a die, has an equal likelihood of being selected at random. From this we develop the
idea of probability.

Probability is a branch of mathematics that allows us to investigate random events. With
probability we focus on the occurence of random events. By understanding these events, we can
model real-world cases.

Probability theory requires a basic understanding of sets. Sets are collections of objects. We
have already seen that these objects can be categorical or numerical in nature. There are many
more sets, but these are the ones we are interested in.

We can create subsets of a set. A subset of a list contains some of the elements in a larger set.
We can examine the intersection of sets, the union or sets, and the membership of a set.
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Consider the sets of side-effects of two new drugs being created in a pharmacological
laboratory. If a side-effect is present in one or both of the sets then it is a member of that set (or
those sets). The intersection of the two sets, is the set of elements (side effects) that they have
in common. The union of the two sets combines (without repetition) all the elements (side-
effects) of both sets.

We usually consider a universal set. A universal set is a collection of all possible elements. In
our example of the side-effects of a drug, we might consider a long list of side-effects. Each of
the new drug only have some of the side-effects in the long list, which is the universal set. The
universal set can be seen as the sample space of all possible elements. To date, we have
included very speci�c elements in the sample space and only allowed the elements that actually
occured in our study as the sample space. The be sure, a sample space can contain more
elements than just the ones we captured for our study.

If a set is contained within a universal set, the complement of the set are all the elements that
are in the universal set, but not in the contained set itself.

THE PROBABILITY OF OUTCOMES

Probability theory examines the random nature with which events occur. In probability theory an
event is the outcome of a random selection of an element in a set. We are interested in the
likelihood of the occurrence of that event. An experiment allows one of the elements of a set to
be chosen at random. The event is the outcome of that experiment, selecting one of the
elements in the set.

Our interest usually lie in independent events. For independent events, the current outcome of
an experiments is unaffected by any prior outcome(s).

One very common probability is that of �ipping a fair coin. If fair, the side that lands face up is an
independent event. Flipping a coint twice would result in one the following possible outcomes,
where H is heads and T is tails:

HH
HT
TH
TT

Fliiping the coin twice can only have one of these outcomes. Together they make up the sample
space of our experiment of �ipping the die twice. The actual outcome of two �ips is a subset of
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the sample space (consisting of four elements). In this case, each outcome has a 25% likelihood
of being the outcome. We write that  (the probability of H and H is %).𝑃 (𝐻𝐻) = 0.25 25

We can state a different outcome entirely. If the outcome is at least one head in two �ips, we
would have , as three of the four equally likely outcomes has a
head in it.

𝑃 (at least one head) = 0.75

What if the outcome is at least one head in three �ips? We can answer this question by
considering the sample space of outcomes. In each of the three �ips, we can get either a head
or a tail as event. Each �ip is independent of the one that came before. Both head and tail each
have a likelihood of 0.5 of landing face up. The possible outcomes are:

1. HHH
2. HHT
3. HTH
4. THH
5. HTT
�. THT
7. TTH
�. TTT

Any one of the outcomes has a one-in-eight likelihood. The probability of at least one head is 
 as it is only the last sample space element that does not have at

least one head.
𝑃 (at least one head) = 7/8

1
2
# Probability
7/8

0.875

Let's have some fun and simulate �ipping a coin three times and doing this 1000 times in a row.
With the choice()  function in the random  module of numpy we can create two elements. We'll
choose 0  and 1  to represent tails and heads respectively. The second argument states how
many times we want to choose from this set, which is 3  in our case, and then we set the
replace  argument to True , meaning once 0  or 1  is selected it goes back in the basket to be
selected again (selection with replacement). We need to do this for our example, as we are
simulating three �ips.

1
2
# Everytime this code is run, a new outcome will appear
np.random.choice(np.array([0, 1]), 3, replace=True)

array([0, 0, 1])
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We can use list comprehension to run the code �ve times.

1 [np.random.choice(np.array([0, 1]), 3, replace=True) for i in range(5)]

[array([0, 1, 1]), 
 array([0, 0, 1]), 
 array([1, 0, 0]), 
 array([0, 1, 0]), 
 array([0, 0, 0])]

If we sum each array and it is more than 0, we know that we have a head. We can now start a
count at 0, �ip the coin three times, see if the sum is more than 0, and if so, add to the counter.
Let's see if we get close to a probability of 0.875 as theoretically predicted, when we repeated
our experiment  times.1000

1
2
3
4
5
6
7
8
9

10

np.random.seed(2)  # Seeing the pseudo-random number generator
count = 0 # Counter
 
for i in range(1000):
  flip_3 = sum(np.random.choice(np.array([0, 1]), 3, replace=True))
 
  if flip_3 > 0:
    count += 1
 
print('Total number of experiments: 1000', '\n', 'Total number with at least one

Total number of experiments: 1000  
 Total number with at least one heads:  877 

Remember that seeding the pseudo-random number generator means that we will get the same
random output every time. Our result is 0.877. No too far off from the prediction. Try other
pseudo-random number generator integers such as 12 or increase the number of cases to 

 or more.10000

From our current narrative it should be clear that probabilities range from  to . We can
never get a negative probability or an outome with a probability of more than %.
Furthermore, if an outcome either occurs or does not occur, we note (1) for the probability of the
outcome occurring versus the probability of it not occurring. This means that the probability of
mutually exclusive, collectively exhaustive outcomes sum to .

0.0 1.0

100

1.0

𝑃 (event not occuring) = 1 − 𝑃 (event occurring) (1)

USING NEGATION
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Here, we make use of (1) above.

Let's use our fair die again. We ask what the probability of rolling a  is, given a single roll. What
about the probability of at at least one six in two consecutive rolls (only a single six is required)?
Then what about three, four, and more rolls. We have seen that the probability of rolling a  at a
single roll is one-sixth.

6

6

To answer this type of question we look at the event not occurring. The probability of a  not
been rolled on a single roll is shown in (2).

6

𝑃 (¬6) = 1 − =
1

6

5

6
(2)

The  symbol is used for negation. It reads the probability of not being a . From (1), we have
(3), the probability of a .

¬ 6

6

𝑃 (6) = 1 − 𝑃 (¬6) = 1 −
5

6
(3)

The probability of there not being a  in two rolls is shown in (4), where we use powers.6

𝑃 (6 in two rolls) = 1 − = 1 − = 1 − =[𝑃 (¬6)]2 ( )
5

6

2 25

36

11

36
(4)

In  rolls we have (5).𝑛

𝑃 (6 in 𝑛 rolls) = 1 − ( )
5

6

𝑛

(5)

We can use list comprehension to calculate show the probability of a six in  through  rolls.1 10

1
2
six = [1 - (5/6)**n for n in range(1, 11)]
six

[0.16666666666666663, 
 0.30555555555555547, 
 0.42129629629629617, 
 0.5177469135802468, 
 0.598122427983539, 
 0.6651020233196159, 
 0.7209183527663465, 
 0.7674319606386221, 
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 0.8061933005321851, 
 0.8384944171101543]

With  rolls there is an % probability of a  landing face up.10 83.8 6

We can plot these probabilities for  rolls.40
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px.scatter(
    x=range(1, 41),
    y=[1 - (5/6)**n for n in range(1, 41)],
    title='Probability of a six in 1 through 40 rolls',
    labels={
        'x':'Numer of rolls',
        'y':'Probability of a six appearing'
    }
)

TYPES OF PROBABILITIES

We need to discuss the types of probabilities. Outcomes are often stated as relative frequencies
instead of absolute counts. It is important to be able to work with relative frequencies when
considering probabilities.
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There are three types of probabilities, namely unconditional, joint, and conditional probabilities.
Unconditional probability (or marginal probability) is a probability of an outcome given the
sample space for a single variable. We consider two containers, I and II, each containing balls of
three individual colors: red, green, and blue. Below, we create a dataframe object with relative
frequencies for all entries.

1 to 2 of 2 entries Filter

Show 25  per page

I 0.26 0.36 0.18
II 0.09 0.07 0.04

Container Red Green Blue

1
2
3
4

# Balls only have a single color
df = pd.DataFrame({'Container':['I', 'II'], 'Red':[0.26, 0.09], 'Green':[0.36, 0
df.set_index('Container', inplace=True)  # Setting the first column as the index
df

Since the values are all expressed as relative frequencies (the frequency divided by the sample
size), we note that they add to  for all the balls.1.0

1 0.26 + 0.36 + 0.18 + 0.09 + 0.07 + 0.04

1.0

The relative frequency of a red ball in container I is , and so on. We can now say that the
unconditional probability of a ball being in container I is the total of all the relative frequencies in
the �rst row. We can calculate the sum of each of the rows with the .sum()  method. The
axis=1  argument sums along each of the columns (i.e. the rows).

0.26

1 df.sum(axis=1)

Container 
I     0.8 
II    0.2 
dtype: float64

We see that the unconditional probability for a ball being in container I is 0.8.

The unconditional probability of being a green ball, would be the column total (i.e. the sums
along each row for that column). We use axis=0 .

1 df.sum(axis=0)

Red      0.35 

https://colab.research.google.com/notebooks/data_table.ipynb
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Green    0.43 
Blue     0.22 
dtype: float64

We see the unconditional probability of a green ball is  and this is independent on which
container the ball is in.

0.43

In a joint probability we are interested in two outcomes at once. The joint probability of a ball
being in container I and being green is the intersection of the probabilities of being in I and being
green. In our table, it is , the relative frequency.0.36

A conditional probability is the probability of an outcome, given that another has occured. The
conditional probability of being in container I given that a green ball is chosen at random. We
write . This is the ratio of a joint probability to an unconditional probability. The joint
probability of being a green ball and being in conainer I is . The probability of being in
container I is . The conditional probability of being in container I given that the ball is green is
then calculated below.

𝑃 (I|green)

0.36

0.8

The equation for a conditional probability is shown in (6).

𝑃 (𝐴|𝐵) =
𝑃 (𝐴 ∩ 𝐵)

𝑃 (𝐵)
(6)

We will use the  in (6) to be container I and  to be a green ball. The intersection symbol, ,
refers to the joint probability. We see the result below, where the probability of being in container
I and being green is  and the proabbility of bring a green ball is 

.

𝐴 𝐵 ∩

𝑃 (𝐴 ∩ 𝐵) = 0.36

𝑃 (𝐵) = 0.43

1 0.36 / 0.43

0.8372093023255813

There is a % probability that the ball is from container I.83.7

We can use conditional probabilities to see if two events are independent of each other. For two
ouctomes A and B, we have independence if  and .𝑃 (𝐴|𝐵) = 𝑃 (𝐴) 𝑃 (𝐵|𝐴) = 𝑃 (𝐵)

Let's see if the probability of selecting a green ball at random (B) is independent of the container
that it is from (A). We can use the two equations below in (7).
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𝑃 (𝐴|𝐵) =
𝑃 (𝐴 ∩ 𝐵)

𝑃 (𝐵)

𝑃 (𝐵|𝐴) =
𝑃 (𝐵 ∩ 𝐴)

𝑃 (𝐴)

(7)

1
2
3
4

p_A_given_B = 0.36/0.8  # Probability of being in container I given a green ball
p_B_given_A = 0.36/0.43  # Probability of a green ball given that is was chosen 
p_A = 0.43  # Probability of a green ball
p_B = 0.8  # Probability of being in container I

1 p_A_given_B == p_A

False

1 p_B_given_A == p_B

False

These outcomes are not independent.

If we were to select a ball at random, what is the probability that it is red (denoted as A) OR is in
container II (B)? Here we are dealing with the addition of probabilities. For this we can use
equation (8) for two probabilities A and B.

𝑃 (𝐴 ∪ 𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) − 𝑃 (𝐴 ∩ 𝐵) (8)

1
2
3
4
5

p_red = 0.26 + 0.09
p_II = 0.09 + 0.07 + 0.04
p_red_II = 0.09
 
p_red + p_II - p_red_II

0.4600000000000001

There is a 46% probability that ball will either be red or in container II.

What about the probability that our random ball is both red AND is from container II. This
requires the multiplication of the probabilities. We can use either of the following rearrangement
of conditional probability, shown in (9).

𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴|𝐵) 𝑃 (𝐵)

𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐵|𝐴) 𝑃 (𝐴)

(9)

1 p red given II = 0 09 / 0 2 # Probability of a reg ball given it is chosen from



16/07/2021 07RandomnessAndSampling.ipynb - Colaboratory

https://colab.research.google.com/drive/1GwS66lULvxCjv52ke_nf40l3kRP1r2Wx#printMode=true 13/27

1
2
3

p_red_given_II = 0.09 / 0.2  # Probability of a reg ball given it is chosen from
p_II = 0.2  # Probability of container II
p_red_given_II * p_II

0.09

We note that it is %. It is nothing but the relative frequency.9

The complement of a probability, i.e. of a speci�ed event not occurring is shown in (10).

𝑃 ( ) = 1 − 𝑃 (𝐴)𝐴
𝑐 (10)

EXAMPLE PROBLEM

Imagine three cards. One is red on both sides, one is white on both sides, and one is red on one
side and red on the other. If a card is chosen at random and one side is shown to you and it is
red, what is the probability that the card's other side is red?

Stop and think before reading on. What do you think the probability is?

Consider all the probabilities. They are listed below. We use the letters R for red and W for white.
The �rst letter in every pair is the side facing you.

RR
RR
RW
WR
WW
WW

It is important to remember that the all red and all white cards can be shown to you in two
different orientations. We then note that being shown one red face means that only the �rst
three cases above apply. We note that for the three remaining possibilities, we have two red and
a single wide side at the back. The probability that the other side is red is therefor two-thirds.

RANDOM VARIABLES

In this and previous notebooks, we view a statistical variable as the name of a column in a
spreadsheet. The data point values that we capture for a speci�c variable has a certain type, i.e.
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categorical or numerical. This view simpli�es our later use of data analysis in Python. There are
some deeper subtleties, though, some of which we will brie�y touch upon.

A random variable is a function that maps the outcome of an experiment to a number. Imagine
that we are rolling two normal dice and we add up the values that land face up. The minimum
value is two and the maxium is 12. Let's see all the outcomes (summed over each die):

1. 1 + 1 = 2
2. 1 + 2 = 3
3. 2 + 1 = 3
4. 2 + 2 = 4
5. 1 + 3 = 4
�. 3 + 1 = 4
7. 2 + 3 = 5
�. 3 + 2 = 5
9. 1 + 4 = 5

10. 4 + 1 = 5
11. 3 + 3 = 6
12. 2 + 4 = 6
13. 4 + 2 = 6
14. 1 + 5 = 6
15. 5 + 1 = 6
1�. 3 + 4 = 7
17. 4 + 3 = 7
1�. 2 + 5 = 7
19. 5 + 2 = 7
20. 1 + 6 = 7
21. 6 + 1 = 7
22. 4 + 4 = 8
23. 3 + 5 = 8
24. 5 + 3 = 8
25. 2 + 6 = 8
2�. 6 + 2 = 8
27. 4 + 5 = 9
2�. 5 + 4 = 9
29. 3 + 6 = 9
30. 6 + 3 = 9
31. 5 + 5 = 10
32. 4 + 6 = 10
33. 6 + 4 = 10
34. 5 + 6 = 11



16/07/2021 07RandomnessAndSampling.ipynb - Colaboratory

https://colab.research.google.com/drive/1GwS66lULvxCjv52ke_nf40l3kRP1r2Wx#printMode=true 15/27

35. 6 + 5 = 11
3�. 6 + 6 = 12

If we make the random variable  (in a spreadsheet it would be a column header such as
sum_of_two_dice ), we see the sample space as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. Every time
we run our experiment (rolling the dice) we get a random variable (one of the 11 sample space
elements).

𝑋

We say that all the totals that sum to 2 maps  to 2. All the values that sum to 3 maps  to 3,
and so on.

𝑋 𝑋

Some of the elements are more likely to occur. Below we see the probabilities for the 11
elements:

𝑃 (𝑋 = 2) →
1

36

𝑃 (𝑋 = 3) →
2

36

𝑃 (𝑋 = 4) →
3

36

𝑃 (𝑋 = 5) →
4

36

𝑃 (𝑋 = 6) →
5

36

𝑃 (𝑋 = 7) →
6

36

𝑃 (𝑋 = 8) →
5

36

𝑃 (𝑋 = 9) →
4

36

𝑃 (𝑋 = 10) →
3

36

𝑃 (𝑋 = 11) →
2

36

𝑃 (𝑋 = 12) →
1

36

(These are based on how many ways there are to get to a speci�c summed value.)

We can use list comprehension to calculate the 11 probabilities.

1 [i / 36 for i in [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]]

[0.027777777777777776, 
 0.05555555555555555, 
 0.08333333333333333, 
 0.1111111111111111, 
 0.1388888888888889, 
 0.16666666666666666, 
 0.1388888888888889, 
 0.1111111111111111, 
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 0.08333333333333333, 
 0.05555555555555555, 
 0.027777777777777776]

We have a here an theoretical distribution, the theoretical pattern of frequencies of random
events.
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px.bar(x=[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
       y=[i / 36 for i in [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]],
       title='Probabilities of the sum of two dice',
       labels={'x':'Sum of two face values', 'y':'Frequency'})

We note that it is most likely that you roll a seven and (equally) least likely to roll a  or a 12.2

Since these probabilities are mutually exclusive events, we can sum the probabilities.

The probability that  is more than or equal to 10 is thus 
. There is a 16.6% probability of rolling a 10

or more.

𝑋

𝑃 (𝑋 ≥ 10) = 0.083 + 0.055 + 0.028 = 0.166

1 0.083 + 0.055 + 0.028
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0.166

Now that we know more about the theoretical distribution, let's simulate our experiment 
times and look at an empirical distribution (of the actual random values).

10000

1
2
np.random.seed(3)
roll_totals = pd.DataFrame({'RollTotal':[np.sum(np.random.randint(1, high=7, siz

1 to 5 of 5 entries Filter

Show 25  per page

0 4
1 6
2 2
3 7
4 10

index RollTotal

1 roll_totals.head()

We can use the value_counts  method to see how close we get to the theoretical probabilities.

1 roll_totals.RollTotal.value_counts(normalize=True)

7     0.1699 
6     0.1405 
8     0.1337 
5     0.1111 
9     0.1047 
10    0.0854 
4     0.0853 
11    0.0559 
3     0.0554 
12    0.0299 
2     0.0282 
Name: RollTotal, dtype: float64

The sort_index  method is a way to get our index in order.

1 roll_totals.RollTotal.value_counts().sort_index()

2      282
3      554
4      853
5     1111
6     1405
7     1699
8     1337
9     1047
10     854

https://colab.research.google.com/notebooks/data_table.ipynb
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11     559
12     299
Name: RollTotal, dtype: int64

Not too bad. Below, we create a bar graph to view all the results.
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px.bar(x=range(2, 13),
       y=roll_totals.RollTotal.value_counts().sort_index().tolist(),
       title='Bar chart showing frequency of each total',
       labels={'x':'X (sum of two dice)', 'y':'Frequency'}).show()

This is what random variables are all about. In these notebooks, though, we will use the terms
variable or statistical variable to refer to the name of the variable. Each row in our dataset will
refer to a subject in a study (making each row an observation). Each data point value collected
for a variable for a speci�c subject will be a random value from the sample space of the
statistical variable.

An unbiased random selection of subjects where the outcome (value of a statistical variable) is
only determined by the variable under consideration (which is another variable) is always the
aim. This is not always possible. In real life, it is very easy to introduce bias into a study. The
values that we capture are not guarenteed to be random at all! It is also common for other
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variable to have an in�uence on the outcome variable. If this variable is not included in the
analysis it is termed a confounding factor.

DISTRIBUTIONS

Very simply stated, a distribution is a pattern of a list of the data values captured for some
variable. Below, we create a list of pseudo-random values representing the height (in cm) of 200
women (taken from a normal distribution, which we will learn about later in this notebook). The
stats module from the scipy package has a norm  keyword that refers to the normal distribution.
The rvs  function generates random values. We set the argument loc  (the mean) to , the
scale  (standard deviation) to , and specify that we want  samples, using the size
argument. The rvs  function has an in built random_state  arguemt that allows us to seed the
pseudo-random number generator in scipy.

160

10 200

1
2
3
4
5

# Using the stats module in the scipy package
height = stats.norm.rvs(loc=160,
                        scale=10,
                        size=200,
                        random_state=1)

We can create a histogram of relative frequencies of this continuous numerical variable. The
relative frequency histogram visualizes a probability distribution (the distribution of
probabilities). This is done instead of the default frequency (absolute count) histogram and is
achieved adding the histnorm  argument and setting it to probability .

1
2
3
4
5
6
7
8
9

px.histogram(
    x=height,
    histnorm='probability',
    title='Probability distribution',
    labels={
        'x':'Height',
        'y':'Relative frequency'
    }
)
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We can take this opportunity to introduce the concept of a distribution plot. Here, the geometric
area of each rectangle (base times height) in the histogram represents the probability of a value
in that rectangle's interval. The create_distplot  function from the �gure_factory module in
plotly creates a probability density. It adds a smooth version, called a kernel density estimate.

1
2
3
4
5
6
7
8

height_hist = ff.create_distplot([height],
                                 ['Height'],
                                 bin_size=5,
                                 show_curve=True)
 
height_hist.update_layout(title='Distribution plot of heights')
 
height_hist.show()
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Distribution plot of heights

We see a probability density histogram and a rug plot (individual data point values). The
visualizations show us that there are more data point values (heights) close to  and the
futher we get from , the less likely it is to �nd a speci�c value. This represents a distribution
of the desnity of the values.

160

160

What we see above is an example of an empirical distribution. This is the distribution of
collected values from our sample of individuals.

A theoretical distribution is designed through mathematical reason and construction. The Law
of averages states that as we repeat an experiment over an over again, an empricial distribution
approximates a theoretical distribution.

SAMPLING FROM A POPULATION

In many research projects, samples are selected from a population. This makes the projects
viable with respect to cost, time consumed, and human resources available to do the projects. It
is most often impossible to collect data from a whole population unless that population is a well
de�ned scarce resource. Examples of the latter inclide a very speci�c genetic mutation created
in a laboratory and not existing anywhere else or a set of very rare astronomical events.

Below we simulate data for a variable for a polulation of  subjects and then visualize the
dataset with a histogram. The  distribution is used here.

10000

𝜒
2

1
2
np.random.seed(42)
population = np.round(np.random.chisquare(3, 10000), 1)

1
2
3
4
5
6
7
8

px.histogram(
    x=population,
    title='Histogram of variable for complete population',
    labels={
        'x':'Variable value',
        'y':'Frequency'
    }
)
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We can select random samples from the population using the choice  function. Below, we
simulate selecting  individuals and show a histogram of the data.30

1
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7
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10

px.histogram(
    x=np.random.choice(
        population,
        size=30
    ),
    title='Frequency chart of 30 samples',
    labels={
        'x':'Variable value'
    }
)
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Note the difference between the population and the sample when it comes to values that were
rare in the population.

The larger the sample size, the closer it resembles the population. Below, we sample 
subjects.

100

1
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5
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10

px.histogram(
    x=np.random.choice(
        population,
        size=100
    ),
    title='Frequency chart of 100 samples',
    labels={
        'x':'Variable value'
    }
)
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What about  samples.1000

0 2 4 6 8 10
0

20

40

60

80

100

Frequency chart of 1000 samples

Variable value

co
un

t

1
2
3
4
5
6
7
8
9

10

px.histogram(
    x=np.random.choice(
        population,
        size=1000
    ),
    title='Frequency chart of 1000 samples',
    labels={
        'x':'Variable value'
    }
)
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The sample starts to approximate the population, with the law of averages at play. A larger
sample size is advantages when it comes to analysis and inference (infering the results of the
sample to the greater population).

SAMPLING DISTRIBUTIONS

Once we take a sample from a population and capture values for a variable, we can summarize
the random variables (data values). We studied many such statistics in a previous notebook.
Here, we consider the mean. Below, we calculate the mean from a single sample of 
individuals from our population created above.

30

1
2
3
4

np.mean(np.random.choice(
    population,
    30
))

3.183333333333333

Since we have access to a powerful computer language and computational resources, we can
simulate taking repeated samples. At every repeat of the experiment, we can calculate a mean
and record it in a list. We do this  times using list comprehension. We refer to this list of
means as sampling means. The distribution of all these means are an example of a sampling
distribution. Other statistics also have sampling distributions. Below, we visualize it as a
histogram.

50

1 mean_50 = [np.mean(np.random.choice(population, 30)) for i in range(50)]

1
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7

px.histogram(
    x=mean_50,
    title='Sampling distribution of 50 means',
    labels={
        'x':'Mean values'
    }
)
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We can simulate even more repeat studies. Below, it is done  times. These distributions of
the mean values are empirical distributions.

1000
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mean_1000 = [np.mean(np.random.choice(population, 30)) for i in range(1000)]
 
px.histogram(
    x=mean_1000,
    title='Sampling distribution of 1000 means',
    labels={
        'x':'Mean values'
    }
)
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